Hierarchical structured Mn2O3 nanomaterials with excellent electrochemical properties for lithium ion batteries†
Abstract
A series of Mn2O3 nanomaterials with hierarchical porous structures was synthesized using three types of leaves as templates. In addition to their different morphologies, different porous nanostructures were achieved by choosing different leaves. The Mn2O3 nanomaterial prepared by using gingko leaves as a template provides a larger pore volume and a higher Brunauer–Emmett–Teller (BET) surface area. At the same time, this material also displays excellent electrochemical performance, that is, the specific capacities are 1274.6 mA h g−1 after 300 cycles and 381.5 mA h g−1 at current densities of 300 and 3000 mA g−1, respectively.