Strain-effected physical properties of ferromagnetic insulating La0.88Sr0.12MnO3 thin films
Abstract
The functional perovskite La1−xSrxMnO3 (LSMO) possesses various exotic phases owing to competing physical parameters and internal degrees of freedom. In particular, the nature of the ferromagnetic insulating phase (FMI) has not been adequately explored, resulting in a limited understanding of the relationship between crystal structure and magnetism. To investigate this structure–property relationship, epitaxial La0.88Sr0.12MnO3 thin films were grown on two different substrates, (001) SrTiO3 and (001) (LaAlO3)0.3(Sr2AlTaO6)0.7, by pulsed laser deposition. Element-specific and surface-sensitive techniques were applied in conjunction with bulk magnetometry to investigate the inextricable link between the structures and magnetic properties of the films and the effects of tuning the strain. The results unambiguously demonstrate that structure–property relationship of a FMI LSMO tuned by strain has a crucial role for manipulating the properties in the FMI regime.