A novel route to the synthesis of an Fe3O4/h-BN 2D nanocomposite as a lubricant additive
Abstract
Two-dimensional (2D) nanocomposites as lubricant additives have been widely studied, but the synthetic process of the nanocomposites is not always environmentally friendly or economical. In this study, a new 2D nanocomposite, Fe3O4/h-BN, has been prepared by physical mixing of exfoliated h-BN nanosheets and organically modified Fe3O4 nanoparticles. The nanocomposite displays a unique 2D-layered structure without folds or wrinkles. The Fe3O4 nanoparticles are uniformly dispersed on the h-BN nanosheet surfaces with the help of an elegant self-assembly strategy from van der Waals interactions. For the first time, Fe3O4/h-BN is studied as a lubricant additive and it exhibits excellent tribological properties. The coefficient of friction (COF) and the wear depth can be respectively reduced by 47% and 80% compared with the base oil. Based on the advantages of a simple and low-cost synthetic process and significant tribological properties, Fe3O4/h-BN offers great potential for lubrication application.