Issue 22, 2019, Issue in Progress

Self-assembly of l-phenylalanine amino acid: electrostatic induced hindrance of fibril formation

Abstract

Nanostructure morphology originating from the self-assembly of molecules has attracted substantial attention due to its role in toxic amyloid fibril formation and immense potential in the design and fabrication of novel biomaterials. This study presents the role of intermolecular electrostatic interaction on the self-assembly process of L-phenylalanine (L-Phe) amino acid. We have employed attenuated total reflection Fourier transform infrared spectroscopy to probe the existence of different ionization states of the amino acid in various pH aqueous solutions. The self-assembly process of L-Phe in the aqueous phase is explored by using circular dichroism absorption and nuclear magnetic resonance spectroscopic tools. The observed spectral features have shown the signature of higher order structures and possible perturbation in the π–π stacking aromatic interactions for the cationic and anionic states of the amino acid. Scanning electron microscopy is used to probe the self-assembled morphology of the L-Phe amino acid dried samples prepared from the same pH aqueous solutions. We find that for the case of zwitterionic states the self-assembly nanostructures are dominated by the presence of fibrillar morphology, however interestingly for cationic and anionic states the morphology is dominated by the presence of flakes. Our finding demonstrates the potential influence of intermolecular electrostatic interaction over the aromatic π–π stacking interaction in hindering the fibril formation.

Graphical abstract: Self-assembly of l-phenylalanine amino acid: electrostatic induced hindrance of fibril formation

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2019
Accepted
11 Apr 2019
First published
23 Apr 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 12596-12605

Self-assembly of L-phenylalanine amino acid: electrostatic induced hindrance of fibril formation

D. Tomar, S. Chaudhary and K. C. Jena, RSC Adv., 2019, 9, 12596 DOI: 10.1039/C9RA00268E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements