Issue 23, 2019

Elastic and hydrostatic behaviour of a zinc dietary supplement, zinc glycinate hydrate

Abstract

Coordination polymer based dietary supplement tablets are commonly consumed in our daily life and play an important role in the pharmaceutical industry. To fully understand their tableting process, their mechanical properties need to be comprehensively studied. In this work, the elastic and hydrostatic behaviour of a zinc supplement, zinc glycinate hydrate (Zn[O2CCH2NH2]2·H2O), have been studied via density functional theory (DFT) calculations and high-pressure synchrotron powder X-ray diffraction. This material has a pseudo-layered structure and can be successfully exfoliated into nanosheets. The DFT calculated elastic moduli along the principal axes (13.84–36.11 GPa) indicate a significant elastic anisotropy of ZnG as expected for a layered system, and the directional dependent elastic modulus can be corroborated with the underlying atomic structure. In addition, the calculated B/G ratios (1.30–3.83) according to Pugh's criterion reveal that ZnG could be brittle under uniaxial stress (B and G are bulk modulus and shear modulus, respectively). Furthermore, the measured B is ∼31 GPa, which lies in the middle of the values between inorganic dietary supplements and small organic drug crystals. These results provide some quantitative information about the tableting process of the hybrid dietary supplement which could be different from their inorganic and organic pharmaceutical counterparts.

Graphical abstract: Elastic and hydrostatic behaviour of a zinc dietary supplement, zinc glycinate hydrate

Supplementary files

Article information

Article type
Paper
Submitted
16 Jan 2019
Accepted
17 Apr 2019
First published
30 Apr 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 13153-13158

Elastic and hydrostatic behaviour of a zinc dietary supplement, zinc glycinate hydrate

M. Azeem, M. Asif, D. Gui, L. Dong, C. Pei, P. Lu and W. Li, RSC Adv., 2019, 9, 13153 DOI: 10.1039/C9RA00385A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements