Issue 31, 2019

A new methodology for sensory quality assessment of garlic based on metabolomics and an artificial neural network

Abstract

This study has established a new method for the sensory quality determination of garlic and garlic products on the basis of metabolomics and an artificial neural network. A total of 89 quality indicators were obtained, mainly through the metabolomics analysis using gas chromatography/mass spectrometry (GC/MS) and high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The quality indicator data were standardized and fused at a low level, and then seven representative indicators including the a* (redness) value, and the contents of S-methyl-L-cysteine, 3-vinyl-1,2-dithiacyclohex-5-ene, glutamic acid, L-tyrosine, D-fructose and propene were screened by partial least squares discriminant analysis (PLS-DA), analysis of variance (ANOVA) and correlation analysis (CA). Subsequently, the seven representative indicators were employed as the input data, while the sensory scores for the garlic obtained by a traditional sensory evaluation were regarded as the output data. A back propagation artificial neural network (BPANN) model was constructed for predicting the sensory quality of garlic from four different areas in China. The R2 value of the linear regression equation between the predicted scores and the traditional sensory scores for the garlic was 0.9866, with a mean square error of 0.0034, indicating that the fitting degree was high and that the BPANN model built in this study could predict the sensory quality of garlic accurately. In general, the method developed in this study for the sensory quality determination of garlic and garlic products is rapid, simple and efficient, and can be considered as a potential method for application in quality control in the food industry.

Graphical abstract: A new methodology for sensory quality assessment of garlic based on metabolomics and an artificial neural network

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2019
Accepted
06 May 2019
First published
06 Jun 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 17754-17765

A new methodology for sensory quality assessment of garlic based on metabolomics and an artificial neural network

J. Liu, L. Liu, W. Guo, M. Fu, M. Yang, S. Huang, F. Zhang and Y. Liu, RSC Adv., 2019, 9, 17754 DOI: 10.1039/C9RA01978B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements