Nitrogen/phosphorus synergistic flame retardant-filled flexible polyurethane foams: microstructure, compressive stress, sound absorption, and combustion resistance
Abstract
Compared with a rigid polyurethane foam, a flexible polyurethane foam (FPUF) has more diversified applications including filtration, sound absorption, vibration-proofing, decoration, packaging, and heat insulation. However, its most potential hazard is flammability. Therefore, in this study, we focused on improving its flame retardation and then tested its sound absorption with the addition of nitrogen/phosphorus synergistic flame retardants. The influence of phosphorus-based flame retardants (TCPP, TDCP, and V6) and a nitrogen/phosphorus synergistic flame retardant (melamine-TDCP) on its microstructure, compressive stress, sound absorption, thermal stability, and flame retardation was systematically explored. The presence of phosphorus flame retardants improved the sound absorption but considerably decreased the mechanical properties. The melamine-TDCP compound flame retardant delivered smaller cells and thus increased the compression property of the resulting foam. Moreover, with a higher content of melamine, the initial mass-loss temperature also increased. In particular, on using TDCP and 5 wt% of melamine as flame retardants, the compressive stress increased by 3.4 times, the average sound absorption coefficient was 0.45, and LOI reached 25.5, which met the requirements of industrial flame retardant/sound absorbent materials. This resultant flame retardant/sound absorbent flexible polyurethane foam can serve as a mattress and furniture pad material, vehicle seat cushion material, and liner for laminated composites in the future.