Issue 32, 2019

Synthesis and structure of [(Ph3P)2Cu(μ-SeCH2Ph)2In(SeCH2Ph)2] as a single-source precursor for the preparation of CuInSe2 nano-materials

Abstract

The reaction of freshly prepared Na[In(SeCH2C6H5)4] with the mixture of CuCl and triphenylphosphine in methanol yielded [(PPh3)2CuIn(SeCH2C6H5)4]. The X-ray structure of the complex revealed the monomeric form of [(Ph3P)2Cu(μ-SeCH2Ph)2In(SeCH2Ph)2] consisting of tetrahedral Cu(I) and In(III) centers, bridged by two benzyl selenolate ligands. The complex on pyrolysis in a furnace or in oleylamine/HDA yielded tetragonal CuInSe2. The morphology and composition of nanostructures were investigated by pXRD, SEM, TEM and EDX analysis. The band gap of the CuInSe2 nanostructures, obtained from pyrolysis in HDA and OA has been deduced from DRS as 1.85 and 1.86 eV, respectively.

Graphical abstract: Synthesis and structure of [(Ph3P)2Cu(μ-SeCH2Ph)2In(SeCH2Ph)2] as a single-source precursor for the preparation of CuInSe2 nano-materials

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2019
Accepted
27 May 2019
First published
11 Jun 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 18302-18307

Synthesis and structure of [(Ph3P)2Cu(μ-SeCH2Ph)2In(SeCH2Ph)2] as a single-source precursor for the preparation of CuInSe2 nano-materials

M. K. Pal, S. Dey, S. Neogy and M. Kumar, RSC Adv., 2019, 9, 18302 DOI: 10.1039/C9RA03429C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements