Enhanced upconversion luminescence of GdVO4:Er3+/Yb3+ prepared by spray pyrolysis using organic additives
Abstract
Spray pyrolysis was applied to prepare Er3+/Yb3+-doped GdVO4 particles, and their emission properties were investigated by varying the Er3+/Yb3+ content and the calcination temperature from 900 to 1400 °C. Ethylene glycol (EG), citric acid (CA) and N,N-dimethylformamide (DMF) were used as organic additives in order to improve the upconversion of GdVO4:Er3+/Yb3+. The resulting GdVO4:Er3+/Yb3+ particles show strong green emission due to 2H11/2/4S3/2 → 4I15/2 transitions of Er3+ and weak red peak due to the 4F9/2 → 4I15/2 transition of Er3+. From the result observed by changing the pumping power of the near-infrared (NIR, 980 nm) laser, the observed green emission is caused by a typical two-photon process. In terms of achieving the highest upconversion luminescence, the optimal Er3+ and Yb3+ contents are 1.5% and 20% with respect to Gd, respectively. The luminescence intensity steadily increased as the calcination temperature was elevated up to 1200 °C due to the increment of crystallinity. The upconversion intensity showed a linear relationship with the crystallite size in all the calcination temperature range. Using the EG/CA/DMF mixture as organic additives improves the upconversion emission about 4.3 times higher than when no organic additives are used, due to the enhancement of crystallinity as well as the enlargement of primary particle size.