Issue 47, 2019, Issue in Progress

Photoluminescence and afterglow behavior of Ce3+ activated Li2Sr0.9Mg0.1SiO4 phosphor

Abstract

A blue emitting phosphor Li2Sr0.9Mg0.1SiO4:Ce3+, with long persistence, was synthesized via a high-temperature solid phase method. According to the X-ray diffraction analysis result, the introduction of Mg2+ and Ce3+ ions has no influence on the structure of the host material. Typical 5d-2F5/2 and 5d-2F7/2 transitions of Ce3+ ions were detected by PL spectra, which corresponded to the CIE chromaticity coordinates of x = 0.1584, y = 0.0338. An optimal doping concentration of Ce3+ was determined as of 0.4 at%. Furthermore, the Li2Sr0.9Mg0.1SiO4:Ce3+ phosphor showed a typical triple-exponential afterglow behavior when the UV source was switched off. The highest lifetime of the electrons within the material reached a value of 73.9 s. Thermal stimulated luminescence study indicated that the afterglow of Li2Sr0.9Mg0.1SiO4:Ce3+ was due to the recombination of the electrons with holes released from the traps generated by the doping of Ce3+ ions in the Li2Sr0.9Mg0.1SiO4 host. The afterglow mechanism of Li2Sr0.9Mg0.1SiO4:Ce3+ is illustrated and discussed in detail on the basis of the experimental results.

Graphical abstract: Photoluminescence and afterglow behavior of Ce3+ activated Li2Sr0.9Mg0.1SiO4 phosphor

Article information

Article type
Paper
Submitted
05 Jul 2019
Accepted
14 Aug 2019
First published
30 Aug 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 27386-27390

Photoluminescence and afterglow behavior of Ce3+ activated Li2Sr0.9Mg0.1SiO4 phosphor

Y. Xiao, D. Zhang and C. Chang, RSC Adv., 2019, 9, 27386 DOI: 10.1039/C9RA05093K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements