Issue 48, 2019

Upgrading biochar via co-pyrolyzation of agricultural biomass and polyethylene terephthalate wastes

Abstract

Spent polyethylene terephthalate (PETE) bottles were collected and co-pyrolyzed with rice straw (RS) to examine the characteristics and performance of biochar as a sorbent for various types of U.S. EPA priority pollutants, including 2,4-dinitrotoluene (DNT), 2,4-dichlorophenol (DCP), Pb, chromate (CrO42−), and selenate (SeO42−). During sorption of contaminants to PETE/RS-derived biochar, PETE residues from pyrolysis, pH, and pyrolysis temperature greatly affected the sorption process. Depending on the types of contaminants and experimental conditions, co-pyrolysis of PETE and RS may enhance the sorption of contaminants through different sorption mechanisms, including hydrophobicity, electrostatic force, ion exchange, surface complexation, and surface precipitation. Unlike other contaminants, selenate was reductively transformed by delocalized electrons from the graphitic structure in biochar. Our results strongly suggest that co-pyrolysis of PETE and agricultural wastes may be favorable to enhance the properties of biochar. In addition to syn-gas and bio-oil from co-pyrolysis, biochar may be a valuable by-product for commercial use.

Graphical abstract: Upgrading biochar via co-pyrolyzation of agricultural biomass and polyethylene terephthalate wastes

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2019
Accepted
31 Aug 2019
First published
09 Sep 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 28284-28290

Upgrading biochar via co-pyrolyzation of agricultural biomass and polyethylene terephthalate wastes

S. Oh and T. Seo, RSC Adv., 2019, 9, 28284 DOI: 10.1039/C9RA05518E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements