Synthesis of Fe3O4@PVBC–TMT nanoparticles for the efficient removal of heavy metals ions
Abstract
Core–shell magnetic Fe3O4@PVBC–TMT (Fe3O4@polyvinylbenzyl chloride–trithiocyanuric acid) nanoparticles containing trithiocyanuric acid groups were fabricated and employed for the fast removal of heavy metals from an aquatic environment. The morphology, structure and properties of Fe3O4@PVBC–TMT nanoparticles were characterized by a series of modern analytical tools. The adsorption behavior of the Fe3O4@PVBC–TMT nanoparticles for heavy metals ions in aqueous solutions was investigated by batch experiments. The maximum removal capacities of the Fe3O4@PVBC–TMT nanoparticles toward Mn2+, Ni2+, Cu2+, Cd2+ and Pb2+ ions were 127.4, 146.6, 180.5, 311.5, and 528.8 mg g−1, respectively. Importantly, it is found that Pb2+ ions can be completely and quickly removed by the Fe3O4@PVBC–TMT nanoparticles. The equilibrium was established within 6 min, and the removal efficiencies were found to be 99.9%, 99.8% and 99.5% for Pb2+ ions at the initial concentrations of 100 mg L−1, 200 mg L−1 and 300 mg L−1, respectively. It is hoped that the core–shell magnetic Fe3O4@PVBC–TMT nanoparticles may find application in wastewater treatment.