Low-temperature selective catalytic reduction of NOx with NH3 over an activated carbon-carbon nanotube composite material prepared by in situ method†
Abstract
Ce-supported activated carbon–carbon nanotube composite (Ce/AC-CNTs) catalyst was prepared by in situ formation of CNTs on AC and then modified by Ce. This Ce/AC-CNTs catalyst was subsequently used for low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). The NO conversion of Ce/AC-CNTs was 1.41 times higher than that of Ce/AC at 150 °C with good SO2 tolerance. The catalysts were analyzed by N2 physisorption, SEM, XRD, NH3-TPD, XPS, and Raman technologies. The results showed that the introduction of CNTs could form new mesopores and increase the amount of surface chemisorbed oxygen and acid sites, which all contribute to the high NH3-SCR activity.