Issue 35, 2019

Magnesium hydride alkene insertion and catalytic hydrosilylation

Abstract

The dimeric β-diketiminato magnesium hydride, [(BDI)MgH]2, reacts at 80 °C with the terminal alkenes, 1-hexene, 1-octene, 3-phenyl-1-propene and 3,3-dimethyl-butene to provide the respective n-hexyl, n-octyl, 3-phenylpropyl and 3,3-dimethyl-butyl magnesium organometallics. The facility for and the regiodiscrimination of these reactions are profoundly affected by the steric demands of the alkene reagent. Reactions with the phenyl-substituted alkenes, styrene and 1,1-diphenylethene, require a more elevated temperature of 100 °C with styrene providing a mixture of the 2-phenylethyl and 1-phenylethyl products over 7 days. Although the reaction with 1,1-diphenylethene yields the magnesium 1,1-diphenylethyl derivative as the sole reaction product, only 64% conversion was achieved over a 21 day timeframe. Reactions with the α,ω-dienes, 1,5-hexadiene and 1,7-octadiene, provided divergent results. The initial 5-alkenyl magnesium reaction product of the shorter chain diene undergoes 5-exo-trig cyclisation via intramolecular carbomagnesiation to provide a cyclopentylmethyl derivative, which was shown by X-ray diffraction analysis to exist as a three-coordinate monomer. In contrast, 1,7-octadiene provided a mixture of two compounds, a magnesium oct-7-en-1-yl derivative and a dimagnesium-octane-1,4-diide, as a result of single or two-fold activation of the terminal C[double bond, length as m-dash]C double bonds. The magnesium hydride was unreactive towards internal alkenes apart from the strained bicycle, norbornene, allowing the characterisation of the resultant three-coordinate magnesium norbornyl derivative by X-ray diffraction analysis. Computational analysis of the reaction between [(BDI)MgH]2 and 1-hexene using density functional theory (DFT) indicated that the initial Mg–H/C[double bond, length as m-dash]C insertion process is rate determining and takes place at the intact magnesium hydride dimer. This exothermic reaction (ΔH = −14.1 kcal mol−1) traverses a barrier of 18.9 kcal mol−1 and results in the rupture of the dinuclear structure into magnesium alkyl and hydride species. Although the latter three-coordinate hydride derivative may be prone to redimerisation, it can also provide a further pathway to magnesium alkyl species through its direct reaction with a further equivalent of 1-hexene, which occurs via a lower barrier of 15.1 kcal mol−1. This Mg–H/C[double bond, length as m-dash]C insertion reactivity provides the basis for the catalytic hydrosilylation of terminal alkenes with PhSiH3, which proceeds with a preference for the formation of the anti-Markovnikov organosilane product. Further DFT calculations reveal that the catalytic reaction is predicated on a sequence of Mg–H/C[double bond, length as m-dash]C insertion and classical Si–H/Mg–C σ-bond metathesis reactions, the latter of which, with a barrier height of 24.9 kcal mol−1, is found to be rate determining.

Graphical abstract: Magnesium hydride alkene insertion and catalytic hydrosilylation

Supplementary files

Article information

Article type
Edge Article
Submitted
25 Apr 2019
Accepted
20 Jul 2019
First published
22 Jul 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2019,10, 8108-8118

Magnesium hydride alkene insertion and catalytic hydrosilylation

L. Garcia, C. Dinoi, M. F. Mahon, L. Maron and M. S. Hill, Chem. Sci., 2019, 10, 8108 DOI: 10.1039/C9SC02056J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements