Issue 33, 2019

Reactive oxygen species-triggered off-on fluorescence donor for imaging hydrogen sulfide delivery in living cells

Abstract

Hydrogen sulfide (H2S), an important gasotransmitter, can mediate a variety of pathophysiological processes, and H2S-based donors have been intensively explored for the therapy of cardiovascular injury, nerve damage and intestinal disorders. However, most of the H2S donors are not capable of simultaneously real-time tracking intracellular H2S delivery, which limits their biological application for elucidating the specific function of H2S. Herein we develop the first reactive oxygen species (ROS)-triggered off-on fluorescence H2S donor (NAB) by incorporating ROS-responsive arylboronate into a fluorophore through thiocarbamate. The donor NAB can release carbonyl sulfide (COS) and the fluorophore with a fluorescence off-on response via a ROS-triggered self-immolative reaction, and then COS is quickly converted to H2S by the ubiquitous carbonic anhydrase. This dual function makes NAB suitable for not only in situ and real-time monitoring of the intracellular H2S release but also rescuing RAW264.7 cells from the hazardous oxidative environment under the stimulation of phorbol-12-myristate-13-acetate, revealing the possible potential of NAB as a therapeutic prodrug with the fluorescence imaging capacity.

Graphical abstract: Reactive oxygen species-triggered off-on fluorescence donor for imaging hydrogen sulfide delivery in living cells

Supplementary files

Article information

Article type
Edge Article
Submitted
13 May 2019
Accepted
08 Jul 2019
First published
10 Jul 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 7690-7694

Reactive oxygen species-triggered off-on fluorescence donor for imaging hydrogen sulfide delivery in living cells

Y. Hu, X. Li, Y. Fang, W. Shi, X. Li, W. Chen, M. Xian and H. Ma, Chem. Sci., 2019, 10, 7690 DOI: 10.1039/C9SC02323B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements