Issue 45, 2019

Synthesis of ethanol from aryl methyl ether/lignin, CO2 and H2

Abstract

Currently, ethanol is produced via hydration of ethene or fermentation of foods. Lignin and CO2 are abundant, cheap and renewable feedstocks. Synthesis of ethanol using the lignin or its derivatives is of great importance, but is a great challenge and has rarely been reported. Herein, we propose a route to synthesize ethanol from CO2, H2, and lignin or various aryl methyl ethers, which can be derived from lignin. The reaction could be effectively conducted using Ru–Co bimetallic catalyst and the TON of ethanol could reach 145. Interestingly, ethanol was the only liquid product when lignin was used. A series of control experiments indicate that ethanol was formed via cleavage of aryl ether bond, reverse water gas shift (RWGS) reaction, and C–C bond formation. This protocol opens a way to produce ethanol using abundant renewable resources.

Graphical abstract: Synthesis of ethanol from aryl methyl ether/lignin, CO2 and H2

Supplementary files

Article information

Article type
Edge Article
Submitted
09 Jul 2019
Accepted
01 Oct 2019
First published
02 Oct 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 10640-10646

Synthesis of ethanol from aryl methyl ether/lignin, CO2 and H2

J. Zhang, Q. Qian, Y. Wang, B. B. Asare Bediako, J. Yan and B. Han, Chem. Sci., 2019, 10, 10640 DOI: 10.1039/C9SC03386F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements