Issue 1, 2019

Capture and conversion of carbon dioxide by solar heat localization

Abstract

As the world slowly transitions from conventional fossil fuels to renewable forms of energy, environmentally friendly CO2 capture is urgently needed. Currently, liquid amine and ionic liquid-based systems are utilized for this purpose. However, these forms of capture mostly lead to the formation of stable carbamate salts with high enthalpy of formation, and it is therefore difficult to recover the initial liquid for cyclic operation. Furthermore, amine-based technologies pose concerns including toxic emissions and volatility, while ionic liquid-based systems suffer from complexity of liquid handling and high operational cost. Herein, we report a solid-state sustainable CO2 collector (SCC), which is activated by solar heat localization. This stable cyclic SCC is based on ionic liquids and graphene aerogel, which undergoes solid–liquid phase change to efficiently capture and convert CO2. The SCC captures 0.2 moles of CO2 for every mole of ionic liquid and converts the absorbed CO2 into useful byproducts, including water and calcium carbonate in each cycle. A system prototype of the SCC is developed and demonstrated. The SCC provides a new and promising paradigm to efficiently capture and convert CO2 using abundant solar energy to address global emissions and consequent environmental challenges.

Graphical abstract: Capture and conversion of carbon dioxide by solar heat localization

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2018
Accepted
12 Nov 2018
First published
14 Nov 2018

Sustainable Energy Fuels, 2019,3, 272-279

Author version available

Capture and conversion of carbon dioxide by solar heat localization

V. Kashyap, R. Medhi, P. Irajizad, P. Jafari, M. Nazari, A. Masoudi, M. D. Marquez, T. R. Lee and H. Ghasemi, Sustainable Energy Fuels, 2019, 3, 272 DOI: 10.1039/C8SE00546J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements