Microrheological characterization of covalent adaptable hydrogels for applications in oral delivery†
Abstract
The feasibility of a covalent adaptable hydrogel (CAH) as an oral delivery platform is explored using μ2rheology, microrheology in a microfluidic device. CAH degradation is initiated by physiologically relevant pHs, including incubation at a single pH and consecutively at different pHs. At a single pH, we determine CAH degradation can be tuned by changing the pH, which can be exploited for controlled release. We calculate the critical relaxation exponent, which defines the gel–sol transition and is independent of the degradation pH. We mimic the changing pH environment through part of the gastrointestinal tract (pH 4.3 to 7.4 or pH 7.4 to 4.3) in our microfluidic device. We determine that dynamic material property evolution is consistent with degradation at a single pH. However, the time scale of degradation is reduced by the history of degradation. These investigations inform the design of this material as a new vehicle for targeted delivery.