Issue 1, 2019

Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output

Abstract

Use of solar energy as a source of heat is an important method of storing and providing clean energy for thermal management. However, the difficulties associated with combining the high-energy storage and high-rate heat release of solar thermal storage (STS) lower their ability to output heat controllably, and thus, prevent their application in temperature-sensitive or temperature-responsive systems. Herein, we report for the first time the closed-cycle utilization of photo-thermal energy for thermochromic displays by optimizing the solid-state high-rate heat output of STS films. By controlling the molecular interaction, a tri-azobenzene (Azo)-based templated assembly can be made to combine a maximum energy density of 150.3 W h kg−1, a long half-life (1250 h), and a high power density of 3036.9 W kg−1. The STS film can induce a reversible color change in a complicated thermochromic-patterned display by releasing heat to increase the temperature by 6–7 °C. We also realize variable heat release by controlling the heating rate and temperature to utilize photo-thermal energy efficiently. Efficient cycling utilization of photo-thermal energy using a tri-Azo assembly could be used to harness photo-thermal power for thermal management.

Graphical abstract: Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output

Supplementary files

Article information

Article type
Communication
Submitted
06 Jun 2018
Accepted
10 Sep 2018
First published
10 Sep 2018

J. Mater. Chem. A, 2019,7, 97-106

Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output

W. Yang, Y. Feng, Q. Si, Q. Yan, P. Long, L. Dong, L. Fu and W. Feng, J. Mater. Chem. A, 2019, 7, 97 DOI: 10.1039/C8TA05333B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements