Issue 1, 2019

Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine

Abstract

Ultrafine and uniformly dispersed bimetallic Pt–Ni nanoparticles (NPs) have been immobilized on novel 3-dimensional N-doped graphene networks (NGNs) by a facile wet chemical reduction method. NGNs were obtained by 3-dimensional assembly of graphene layers with simultaneous nitrogen doping via crosslinking of graphene oxide (GO) with melamine formaldehyde resin (MFR) under hydrothermal conditions followed by carbonization. Surprisingly, NGN-supported Pt0.5Ni0.5 NPs exhibit extremely high catalytic activity for the dehydrogenation of hydrazine hydrate, achieving 100% H2 selectivity with the highest turnover frequency (TOF) of 943 h−1 at 303 K reported thus far. The small size and synergistic effects are responsible for the superior catalytic activity.

Graphical abstract: Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine

Supplementary files

Article information

Article type
Communication
Submitted
16 Sep 2018
Accepted
20 Nov 2018
First published
23 Nov 2018

J. Mater. Chem. A, 2019,7, 112-115

Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine

A. Kumar, X. Yang and Q. Xu, J. Mater. Chem. A, 2019, 7, 112 DOI: 10.1039/C8TA09003C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements