Issue 6, 2019

A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2)

Abstract

Lithium-ion batteries with high energy density, long cycle life, and appropriate safety levels are necessary to facilitate the penetration of electrified transportation systems into the automobile market. Currently, Ni-rich layered Li[Ni1−2xCoxMnx]O2 (NCM, x ≤ 0.2) cathodes show high capability for increasing the energy densities of cells. However, the poor thermal stability of this type of cathode is retarding their commercialization. In this study, it is demonstrated that operating Ni-rich cathodes at higher cut-off potentials (>4.3 V) rather than progressing to highly nickel enriched compositions can be a better method of enhancing their energy densities and maintaining adequate thermal stability. It is shown that a Li[Ni0.6Co0.2Mn0.2]O2 (NCM-622) cathode cycled up to 4.5 V exhibits a discharge capacity of 200 mA h g−1 and a capacity retention of 93% after 100 cycles, which are similar to those of Li[Ni0.8Co0.1Mn0.1]O2 (NCM-811) cycled up to 4.3 V. A similar volume change during cycling and comparable NiO-like rocksalt impurity layer after 100 cycles in both of the cathodes may be the reason for their similar cycle lives despite operating at different charge cut-off potentials. In spite of the comparable capacity and retention, the NCM-622 cathode exhibits superior thermal stability, in which the occurrence of the exothermic reaction is delayed by 50 °C, to NCM-811. In addition, analogous trends are observed in the cathodes with higher nickel compositions, i.e., NCM-811 and Li[Ni0.9Co0.05Mn0.05]O2 cycled up to 4.5 V and 4.3 V, respectively.

Graphical abstract: A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2)

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2018
Accepted
06 Jan 2019
First published
07 Jan 2019

J. Mater. Chem. A, 2019,7, 2694-2701

A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2)

J. Kim, K. Park, S. J. Kim, C. S. Yoon and Y. Sun, J. Mater. Chem. A, 2019, 7, 2694 DOI: 10.1039/C8TA10438G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements