Issue 13, 2019

Engineering new defective phases of UiO family metal–organic frameworks with water

Abstract

As defects significantly affect the properties of metal–organic frameworks (MOFs)—from changing their mechanical properties to enhancing their catalytic ability—obtaining synthetic control over defects is essential to tuning the effects on the properties of the MOF. Previous work has shown that synthesis temperature and the identity and concentration of modulating acid are critical factors in determining the nature and distribution of defects in the UiO family of MOFs. In this paper we demonstrate that the amount of water in the reaction mixture in the synthesis of UiO family MOFs is an equally important factor, as it controls the phase which forms for both UiO-67(Hf) and UiO-66(Hf) (F4BDC). We use this new understanding of the importance of water to develop a new route to the stable defect-ordered hcp UiO-66(Hf) phase, demonstrating the effectiveness of this method of defect-engineering in the rational design of MOFs. The insights provided by this investigation open up the possibility of harnessing defects to produce new phases and dimensionalities of other MOFs, including nanosheets, for a variety of applications such as MOF-based membranes.

Graphical abstract: Engineering new defective phases of UiO family metal–organic frameworks with water

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2018
Accepted
13 Feb 2019
First published
19 Feb 2019

J. Mater. Chem. A, 2019,7, 7459-7469

Engineering new defective phases of UiO family metal–organic frameworks with water

F. C. N. Firth, M. J. Cliffe, D. Vulpe, M. Aragones-Anglada, P. Z. Moghadam, D. Fairen-Jimenez, B. Slater and C. P. Grey, J. Mater. Chem. A, 2019, 7, 7459 DOI: 10.1039/C8TA10682G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements