Issue 9, 2019

An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels

Abstract

Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel via molecular-level ion conductive channels in ethylene glycol/H2O (EG/H2O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed via molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.

Graphical abstract: An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2018
Accepted
25 Jan 2019
First published
25 Jan 2019

J. Mater. Chem. A, 2019,7, 4525-4535

An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels

X. Pan, Q. Wang, R. Guo, Y. Ni, K. Liu, X. Ouyang, L. Chen, L. Huang, S. Cao and M. Xie, J. Mater. Chem. A, 2019, 7, 4525 DOI: 10.1039/C8TA12360H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements