Issue 15, 2019

“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance

Abstract

Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm−1, which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm−2 at a current density of 1.0 mA cm−2. Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm−2 over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm−2.

Graphical abstract: “All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance

Supplementary files

Article information

Article type
Communication
Submitted
29 Jan 2019
Accepted
26 Mar 2019
First published
27 Mar 2019

J. Mater. Chem. A, 2019,7, 8826-8831

“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance

C. Yin, X. Liu, J. Wei, R. Tan, J. Zhou, M. Ouyang, H. Wang, S. J. Cooper, B. Wu, C. George and Q. Wang, J. Mater. Chem. A, 2019, 7, 8826 DOI: 10.1039/C9TA01155B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements