Electron-beam irradiation-hard metal-halide perovskite nanocrystals†
Abstract
Recently, regardless of numerous works reporting on the instability of metal-halide perovskites against humidity/oxygen/heat, another intrinsic weakness under high-energy electron-beam (e-beam) irradiation has emerged. Here, e-beam irradiation-hard perovskite nanocrystals (NCs) are reported, which are based on a doping strategy. The lifetime of Mn2+-doped perovskite NCs under e-beam irradiation at a high acceleration voltage of 200 keV is 10-fold prolonged, in comparison to that of their undoped counterpart. It is discovered that the stronger Mn–Cl and Pb–Cl bonds triggered by Mn2+ doping provide an enhanced chemical stability to the perovskite NCs. Furthermore, the enlarged tolerance factor of the NCs with Mn2+ dopants improves the phase stability of the perovskites. Consequently, both enhanced chemical and phase stabilities offer a more negative formation energy for perovskite NCs with fundamentally increased stability under e-beam irradiation. The present work offers a new route towards irradiation-hard perovskite nanomaterials.