Issue 19, 2019

“Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization

Abstract

Conversion of CO2 into fuels and chemicals via electroreduction has attracted significant interest. Via mesostructure design to tune the electric field distribution in the electrode, it is demonstrated that the Cu–In alloy with an inverse opal (CI-1-IO) structure provides efficient electrochemical CO2 reduction and allows for sensitive detection of the CO2 reduction intermediates via surface-enhanced Raman scattering. The significant enhancement of Raman signals of the intermediates on the CI-1-IO surface can be attributed to electric field enhancement on the “hot edges” of the inverse opal structure. Additionally, a highest CO2 reduction faradaic efficiency (FE) of 92% (sum of formate and CO) is achieved at −0.6 V vs. RHE on the CI-1-IO electrode. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results show that the Cu–In alloy with an inverse opal structure has faster adsorption kinetics and higher adsorption capacity for CO2. The “hot edges” of the bowl-like structure concentrate electric fields, due to the high curvature, and also concentrate K+ on the active sites, which can lower the energy barrier of the CO2 reduction reaction. This research provides new insight into the design of materials for efficient CO2 conversion and the detection of intermediates during the CO2 reduction process.

Graphical abstract: “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2019
Accepted
09 Apr 2019
First published
09 Apr 2019

J. Mater. Chem. A, 2019,7, 11836-11846

“Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization

Y. Yang, L. Ohnoutek, S. Ajmal, X. Zheng, Y. Feng, K. Li, T. Wang, Y. Deng, Y. Liu, D. Xu, V. K. Valev and L. Zhang, J. Mater. Chem. A, 2019, 7, 11836 DOI: 10.1039/C9TA02288K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements