Synthesis of the anionic hydroxypropyl-β-cyclodextrin:poly(decamethylenephosphate) polyrotaxane and evaluation of its cholesterol efflux potential in Niemann–Pick C1 cells†
Abstract
Niemann–Pick type C disease (NPC) is a lysosomal storage disease that is characterized by a progressive accumulation of unesterified cholesterol in the lysosomes leading to organ damage from cell dysfunction. Hydroxypropyl-β-cyclodextrin (HP-β-CD) is an attractive drug candidate for treating NPC, as it diminishes cholesterol accumulation in NPC cells. Systemic HP-β-CD treatment, however, is limited by rapid renal clearance. We designed a new anionic HP-β-CD polyrotaxane to act as a slow release formulation based on a polyalkylene phosphate core to improve the pharmacokinetics. The polyalkylene phosphate comprises hydrophobic decamethylene spacers linked by biodegradable anionic phosphodiester bonds. HP-β-CD was threaded onto this polymer first and α-CD afterwards to prevent burst release of the threaded HP-β-CD. Our findings show that HP-β-CD was slowly released from the water soluble polyrotaxane over a 30 days period. The polyrotaxane provided persistently diminished cholesterol levels in NPC1 cells by 20% relative to untreated cells. These results demonstrate the therapeutic potential of this novel HP-β-CD polyrotaxane for the mobilization of aberrantly stored cholesterol in NPC1 cells.