Issue 43, 2019

pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement

Abstract

Theranostic platforms that combine therapeutic and imaging modalities have received increasing interest. The development of theranostic nanovectors that can release therapeutic agents at pathological tissues in an on-demand manner and provide instantaneous feedback through non-invasive imaging techniques is of urgent need. Herein, a new magnetic resonance imaging (MRI) contrast agent, gadolinium oxide (Gd2O3), and an anticancer drug, doxorubicin (DOX), were co-loaded into mesoporous silica nanoparticles (MSNs) with the formation of hybrid Gd2O3@MSN-DOX nanoparticles. The hybrid nanoparticles were further coated with pH-responsive polyelectrolytes that underwent a charge reversal process at acidic pH. Upon entering into cells by folic acid (FA) receptor-mediated endocytosis, the mildly acidic pH within endolysosomes triggered the disassociation of the absorbed polyelectrolytes on the surfaces of the Gd2O3@MSN-DOX nanoparticles and thus actuated the DOX release, thereby exerting an anti-cancer effect. More importantly, the confinement of paramagnetic Gd2O3 within MSNs led to a remarkable increase of MRI relaxivity (r1 = 9.14 mM−1 s−1vs. 3.68 mM−1 s−1 of the clinically applied MRI contrast agent), likely due to the increased tumbling time and coordination number of water molecules. This work provides a feasible strategy to fabricate theranostic nanovectors with controlled release behavior triggered by mildly acidic pH and high-performance MR imaging capability.

Graphical abstract: pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement

Article information

Article type
Paper
Submitted
06 Aug 2019
Accepted
28 Sep 2019
First published
10 Oct 2019

J. Mater. Chem. B, 2019,7, 6840-6854

pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement

K. He, J. Li, Y. Shen and Y. Yu, J. Mater. Chem. B, 2019, 7, 6840 DOI: 10.1039/C9TB01654F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements