Issue 3, 2020

Ultra-sensitive gas phase detection of 2,4,6-trinitrotoluene by non-covalently functionalized graphene field effect transistors

Abstract

The high energy density (4.2 MJ kg−1) and low vapour pressure (7.2 × 10−9 atm) of chemical explosives such as TNT (2,4,6-trinitrotoluene) pose a grave security risk demanding immediate attention. Detection of such hazardous and highly challenging chemicals demands specific, ultra-sensitive and rapid detection platforms that can concomitantly transduce the signal as an electrical readout. Although chemo-sensitive strategies have been investigated, the majority of them are restricted to detecting TNT from solutions and are therefore not implementable in real-time, on-field situations. Addressing this demand, we report an ultra-sensitive (parts-per-billion) and rapid (∼40 s) detection platform for TNT based on non-covalently functionalized graphene field effect transistors (GFETs). This multi-parametric GFET detector exhibits a reliable and specific modulation in its Dirac point upon exposure to TNT in the vapour phase. The chemical specificity provided by 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl) zinc porphyrin (ZnTTPOH) is synergistically combined with the high surface sensitivity of graphene through a non-covalent functionalization approach to realise p-doped GFETs (Zn-GFETs). Such a FET platform exhibits extremely sensitive shifts in Dirac point (ΔDP) that correlate with the number of nitro groups present in the analyte. Analytes with mono-, di-, and tri-nitro substituted aromatic molecules exhibit distinctly different ΔDP, leading to unprecedented specificity towards TNT. Additionally, the Dirac point of Zn-GFETs is invariant for common and potential interferons such as acetone and 2-propanol (perfume emulsifiers) thereby validating their practical applicability. Furthermore, the ΔDP is also manifested as changes in the contact potential of GFETs, indicating that sub-monolayer coverage of ZnTTPOH is sufficient to modulate the transfer characteristics of GFETs over an area 1000 times larger than the dopant dimensions. Specifically, ZnTTPOH-functionalized GFETs exhibit p-doped behaviour with positive ΔDP with respect to pristine GFETs. Such p-doped Zn-GFETs undergo selective charge-transfer mediated interactions with TNT resulting in enhanced electron withdrawal from Zn-GFETs. Thus the ΔDP shifts to a higher positive gate voltage leading to the dichotomous combination of the highest signal generation (1.2 × 1012 V mol−1) with ppb level molecular sensitivity. Significantly, the signal generated due to TNT is 105 times higher in magnitude compared to other potential interferons. The signal reliability is established in cross-sensitivity measurements carried out with a TNT–mDNB (1 : 10 molar ratio) mixture pointing to high specificity for immediate applications under atmospherically relevant conditions pertaining to homeland security and global safety.

Graphical abstract: Ultra-sensitive gas phase detection of 2,4,6-trinitrotoluene by non-covalently functionalized graphene field effect transistors

Supplementary files

Article information

Article type
Paper
Submitted
02 Oct 2019
Accepted
12 Nov 2019
First published
12 Nov 2019

Analyst, 2020,145, 917-928

Ultra-sensitive gas phase detection of 2,4,6-trinitrotoluene by non-covalently functionalized graphene field effect transistors

A. S. Gajarushi, S. G. Surya, M. G. Walawalkar, M. Ravikanth, V. R. Rao and C. Subramaniam, Analyst, 2020, 145, 917 DOI: 10.1039/C9AN01962F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements