Issue 4, 2020

Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration

Abstract

Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe–target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.

Graphical abstract: Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2019
Accepted
01 Dec 2019
First published
02 Dec 2019

Analyst, 2020,145, 1414-1426

Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration

I. Khalil, W. A. Yehye, N. Muhd Julkapli, A. A. I. Sina, S. Rahmati, W. J. Basirun and A. Seyfoddin, Analyst, 2020, 145, 1414 DOI: 10.1039/C9AN02106J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements