Issue 10, 2020

Ferguson analysis of protein electromigration during single-cell electrophoresis in an open microfluidic device

Abstract

In an open microfluidic device, we investigate protein polyacrylamide gel electrophoresis (PAGE) separation performance on single-cell lysate. Single-cell protein electrophoresis is performed in a thin layer of polyacrylamide (PA) gel into which microwells are molded. Individual cells are isolated in these open microwells, then lysed on-chip with a dual lysis and electrophoresis sodium dodecyl sulfate (SDS) buffer. We scrutinize the effect of sieving gel composition on electromigration of protein targets, using a wide range of cellular protein standards (36 kDa to 289 kDa). We find that as PA concentration increases, protein electromigration deviates from the empirical log-linear relationship predicted between migration distance and molecular mass. We perform Ferguson analysis to calculate retardation coefficients and free solution mobilities of nine cellular protein standards and observe that the largest-molecular-mass protein, mTOR (289 kDa), does not behave as predicted by established linear-fit models for SDS-denatured proteins, indicating that mTOR is beyond the linear range of this assay. Lastly, we performed in-gel immunoprobing on the single-cell electrophoretic separations and observed that smaller pore-size gels (higher gel concentration) reduce protein diffusion out of the gel, which does not notably impact the measured immunoprobed protein expression. Compared to larger pore-size gels, the smaller pore-size gels lead to higher local concentrations of the target protein in each protein band, resulting in an increase in the signal-to-noise ratio (SNR) for each protein. Understanding the separation and immunoprobing performance at different gel concentrations improves assay design and optimization for target proteins.

Graphical abstract: Ferguson analysis of protein electromigration during single-cell electrophoresis in an open microfluidic device

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2019
Accepted
21 Apr 2020
First published
29 Apr 2020

Analyst, 2020,145, 3732-3741

Ferguson analysis of protein electromigration during single-cell electrophoresis in an open microfluidic device

K. Y. Tan and A. E. Herr, Analyst, 2020, 145, 3732 DOI: 10.1039/C9AN02553G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements