Issue 12, 2020

Rapid on-site and naked-eye detection of common nitro pesticides with ionic liquids

Abstract

Rapid ‘in-field’ detection of environmentally hazardous organophosphorus and nitro-containing pesticides is highly essential due to the lethal effects caused by the inhibition of the activity of acetylcholinesterase (AChE). In our present study, we demonstrate a novel sensing approach for the simultaneous analysis of five widely used pesticides (methyl parathion, pendimethalin, dicloran, trifluralin, and PCNB) based on the Meisenheimer complex formation between polynitro aromatic compounds (pesticides) and a nucleophile. This colorimetric determination of pesticides involves the use of an ionic liquid, tetrabutylammonium hydroxide (TBAOH), as the nucleophile, which is titrated against different concentrations of pesticides. The addition of TBAOH to the solutions of pesticides results in the formation of intensely colored complexes, which are visualized using UV-vis and NMR spectroscopies allowing the identification of new bands and peaks corresponding to the formation of Meisenheimer complexes. The limit of detection (LOD) for targeted pesticides was found to be in the range of 0.67–10 μM. Furthermore, the practical application of this method is demonstrated by developing different paper-based sensors. Therefore, the strategy proposed here not only serves as a valuable tool that allows unskilled people to detect hazardous pesticides in agricultural products ‘on-site’ but also offers a fast and convenient protocol for the identification of dangerous nitro-containing polyaromatic groups like nitro explosives.

Graphical abstract: Rapid on-site and naked-eye detection of common nitro pesticides with ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2020
Accepted
15 Apr 2020
First published
15 Apr 2020

Analyst, 2020,145, 4335-4340

Rapid on-site and naked-eye detection of common nitro pesticides with ionic liquids

Kovida, V. Sharma and A. L. Koner, Analyst, 2020, 145, 4335 DOI: 10.1039/D0AN00452A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements