Issue 14, 2020

Applying biosensor development concepts to improve preamplification-free CRISPR/Cas12a-Dx

Abstract

Development of CRISPR/Cas-based in vitro diagnostic devices, or CRISPR/Cas-Dx, has become an intensely researched area. Among the different classes of CRISPR/Cas-Dx, the class based on the Cas12a enzyme (i.e., CRISPR/Cas12a-Dx or simply Cas12a-Dx), is predominantly employed for detecting DNA targets. Current research in Cas12a-Dx has focused on appending Cas12a-Dx to preamplification techniques or coupling Cas12a-Dx to different detection modalities, which has inevitably overshadowed the detection performance of Cas12a-Dx and overlooked its intrinsic detection capability without preamplification. We recognize that Cas12a-Dx, which relies on DNA-activated Cas12a to cleave single-stranded DNA, shares significant similarity with other nuclease-based DNA biosensors, whose performances can be influenced by parameters ranging from the reaction buffer to the reaction temperature. We are thus inspired to probe the limits of preamplification-free Cas12a-Dx by exploring and systematically evaluating several potential parameters that may impact its detection sensitivity and time. Using a previously reported fluorescence-based Cas12a-Dx as the test bed, we have identified that the Cas12a enzyme, the reaction buffer, the substrate label, the substrate concentration, and the reaction temperature can be optimized to significantly improve the signal-to-background ratio and the reaction rate of Cas12a-Dx. Based on these findings, we have improved the limit of detection (LOD) of the Cas12a-Dx to 100 fM, while reduced the time-to-positive to <46 min, representing the most sensitive LOD without preamplification and the fastest time-to-positive for this LOD to date. More broadly, our work provides a roadmap for further advancing Cas12a-Dx and perhaps other classes of CRISPR/Cas-Dx.

Graphical abstract: Applying biosensor development concepts to improve preamplification-free CRISPR/Cas12a-Dx

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2020
Accepted
26 May 2020
First published
27 May 2020

Analyst, 2020,145, 4880-4888

Applying biosensor development concepts to improve preamplification-free CRISPR/Cas12a-Dx

K. Hsieh, G. Zhao and T. Wang, Analyst, 2020, 145, 4880 DOI: 10.1039/D0AN00664E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements