Issue 19, 2020

Oxygen consumption rate of tumour spheroids during necrotic-like core formation

Abstract

Hypoxia is one of the major hallmarks of solid tumours and is associated with the poor prognosis of various cancers. A multicellular aggregate, termed a spheroid, has been used as a tumour model with a necrotic-like core for more than 45 years. Oxygen metabolism in spheroids has been studied using phosphorescence quenching and oxygen-sensitive electrodes. However, these conventional methods require chemical labelling and physical insertion of the electrode into each spheroid, which may be functionally and structurally disruptive. Scanning electrochemical microscopy (SECM) can non-invasively analyse oxygen metabolism. Here, we used SECM to investigate whether the changes of the internal structure of spheroids affect the oxygen metabolism. We investigated the oxygen consumption rate (OCR) of MCF-7 breast tumour spheroids with and without a necrotic-like core. A numerical simulation was used to describe a method for estimating the OCR of spheroids that settled at the bottom of the conventional culture plates. The OCR per spheroid volume decreased with increasing spheroid radius, indicating the limitation of the oxygen supply to the core of the MCF-7 spheroid. Formation of the necrotic-like core did not affect the oxygen metabolism significantly, implying that the core had minimal contribution to the OCR even before necrosis occurred. OCR analysis using SECM non-invasively monitors the change of oxygen metabolism in tumour spheroids. The approach is promising to evaluate various three-dimensional culture models.

Graphical abstract: Oxygen consumption rate of tumour spheroids during necrotic-like core formation

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2020
Accepted
15 Jul 2020
First published
20 Jul 2020

Analyst, 2020,145, 6342-6348

Author version available

Oxygen consumption rate of tumour spheroids during necrotic-like core formation

R. Mukomoto, Y. Nashimoto, T. Terai, T. Imaizumi, K. Hiramoto, K. Ino, R. Yokokawa, T. Miura and H. Shiku, Analyst, 2020, 145, 6342 DOI: 10.1039/D0AN00979B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements