Issue 17, 2020

Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy

Abstract

Raman spectroscopy has been used to observe uptake, metabolism and response of single-cells to drugs. Photodynamic therapy is based on the use of light, a photosensitiser and oxygen to destroy tumour tissue. Here, we used single-cell Raman spectroscopy to study the uptake and intracellular degradation of a novel photosensitiser with a diphenylacetylene structure, DC473, in live single-cells from colorectal adenocarcinoma cell lines SW480, HT29 and SW620. DC473 was seen to predominantly accumulate in lipid droplets, showing higher accumulation in HT29 and SW620 cells than in SW480 cells, with a broader DC473 peak shifted to higher wavenumbers. DC473 activation and effects were tracked on live single-cells for 5 minutes. Upon exposure to UV light, the DC473 signal intensity dropped, with remaining DC473 shifting towards higher wavenumbers and widening, with a lifetime of approximately 50 seconds. Morphologically, SW480 and SW620 cells showed changes upon photodynamic therapy, whereas HT29 cells showed no changes. Morphological changes correlated with higher remaining DC473 signal after UV exposure. Our research suggests that DC473 forms aggregates within the cells that disaggregate following activation, showing the potential of Raman spectroscopy for the study of time-dependent single-cell pharmacodynamics.

Graphical abstract: Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2020
Accepted
06 Jul 2020
First published
07 Jul 2020
This article is Open Access
Creative Commons BY license

Analyst, 2020,145, 5878-5888

Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy

J. Gala de Pablo, D. R. Chisholm, C. A. Ambler, S. A. Peyman, A. Whiting and S. D. Evans, Analyst, 2020, 145, 5878 DOI: 10.1039/D0AN01023E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements