Issue 18, 2020

Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS

Abstract

This paper proposes for the first time: (a) a qualitative analytical method based on portable and benchtop backscattering Raman spectrometers coupled to hierarchical cluster analysis (HCA) and multivariate curve resolution – alternating least-squares (MCR-ALS) to identify two polymorphs of antimalarial quinine sulfate in commercial pharmaceutical tablets in their intact forms and (b) a quantitative analytical method based on gold nanoparticles (AuNPs) as active substrates for surface-enhanced Raman scattering (SERS) in combination with MCR-ALS to quantify quinine sulfate in commercial pharmaceutical tablets in solution. The pure concentration and spectral profiles recovered by MCR-ALS proved that both formulations present different polymorphs. These results were also confirmed by two clusters observed in the HCA model, according to their similarities within and among the samples that provided useful information about the homogeneity of different pharmaceutical manufacturing processes. AuNPs-SERS coupled to MCR-ALS was able to quantify quinine sulfate in the calibration range from 150.00 to 200.00 ng mL−1 even with the strong overlapping spectral profile of the background SERS signal, proving that it is a powerful ultrahigh sensitivity analytical method. This reduced linearity was validated throughout a large calibration range from 25.00 to 175.00 μg mL−1 used in a reference analytical method based on high performance liquid chromatography with a diode array detector (HPLC-DAD) coupled to MCR-ALS for analytical validation purposes, even in the presence of a coeluted compound. The analytical methods developed herein are fast, because second-order chromatographic data and first-order SERS spectroscopic data were obtained in less than 6 and 2 min, respectively. Concentrations of quinine sulfate were estimated with low root mean square error of prediction (RMSEP) values and a low relative error of prediction (REP%) in the range 1.8–4.5%.

Graphical abstract: Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2020
Accepted
19 Apr 2020
First published
20 Apr 2020

Anal. Methods, 2020,12, 2407-2421

Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS

S. J. Mazivila, H. I. S. Nogueira, R. N. M. J. Páscoa, D. S. M. Ribeiro, J. L. M. Santos, J. M. M. Leitão and J. C. G. Esteves da Silva, Anal. Methods, 2020, 12, 2407 DOI: 10.1039/D0AY00693A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements