Issue 7, 2020

Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity

Abstract

Antimicrobial peptides (AMPs) as biocides are of great interest because they have the ability to combat antibiotic resistance. Normally, natural AMPs need to be rationally designed or modified for practical use as an antibiotic. Here, a novel AMP, termed FF8, which is a cationic octapeptide composed of arginine, lysine, and phenylalanine, was designed. The FF8 was found to self-assemble into nanofibers when induced by a negatively charged lipid membrane or pH is above 9.4. The fibers on the membrane broke the lipid membrane, forming pores and significantly reducing its fluidity. FF8 also exhibited enhanced antibacterial activity by significantly increasing the permeability of the inner and outer membranes of Escherichia coli (E. coli) and maintaining the pores of the inner membrane of cells, which caused continuous membrane leakage. Because of its high antibacterial activity, cytocompatibility, and cost-effectiveness, FF8 is a promising antibacterial material.

Graphical abstract: Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2019
Accepted
14 Feb 2020
First published
17 Feb 2020

Biomater. Sci., 2020,8, 2031-2039

Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity

Z. Shen, Z. Guo, L. Zhou, Y. Wang, J. Zhang, J. Hu and Y. Zhang, Biomater. Sci., 2020, 8, 2031 DOI: 10.1039/C9BM01785B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements