Issue 22, 2020

“Dual-Key-and-Lock” dual drug carrier for dual mode imaging guided chemo-photothermal therapy

Abstract

Drug resistance and side effects are the two main problems of chemotherapy. In order to address these big challenges, p-PB@d-SiO2, which has the ability to co-deliver both the hydrophobic drug doxorubicin hydrochloride (DOX) and the hydrophilic drug ibuprofen (IBU), is constructed to achieve synergistic treatment. The drug-loaded nanoparticle consists of porous Prussian blue (p-PB) as the core and dendrimer-like SiO2 (d-SiO2) as the shell, which is further thiolated and coated with polyethylene glycol thiol (HS-PEG) to form the “Dual-Key-and-Lock” drug carrier p-PB@d-SiO2-SS-PEG. The locked drugs can only be released in the presence of cooperative triggers, i.e., a high glutathione concentration (the first key) and an acidic environment (the second key). The “dual key”-triggered release is much more significant in cancer lesions than in normal tissues, reducing side effects. Furthermore, cell viability experiments highlight the superior therapeutic efficacy of the dual-drug-loaded nanoparticles compared with the single-drug systems (60%, 73% and 86% vs. 56%, 68%, and 76% at 100, 200 and 500 μg mL−1, respectively). In vitro and in vivo experiments demonstrate the potential application of p-PB@d-SiO2-SS-PEG for dual-mode fluorescence and magnetic-resonance-imaging-guided chemo-photothermal therapy. The “Dual-Key-and-Lock” drug carrier system exhibits the “1 + 1 > 2” effect, demonstrating its excellent performance in synergy therapy for improved therapeutic efficiency and thereby reducing conventional drug resistance and side effects.

Graphical abstract: “Dual-Key-and-Lock” dual drug carrier for dual mode imaging guided chemo-photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2020
Accepted
21 Sep 2020
First published
22 Sep 2020

Biomater. Sci., 2020,8, 6212-6224

“Dual-Key-and-Lock” dual drug carrier for dual mode imaging guided chemo-photothermal therapy

F. Tian, B. Chi, C. Xu, C. Lin, Z. Xu, A. K. Whittaker, C. Zhang, L. Li and J. Wang, Biomater. Sci., 2020, 8, 6212 DOI: 10.1039/D0BM01400A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements