P-doped WO3 flowers fixed on a TiO2 nanofibrous membrane for enhanced electroreduction of N2†
Abstract
Herein, nanoneedle-constructed WO3 flowers are prepared by hydrothermal synthesis, which are characterized by a large surface area leading to abundant active sites. Additionally, P doping is employed as an effective way to generate charge imbalance and induce more empty d-orbitals around W6+, thus facilitating the adsorption of N2 molecules. Moreover, a flexible TiO2 nanofibrous membrane is used as an electrocatalytically active matrix to fix the P-doped, nanoneedle-constructed WO3 flowers. The hierarchically structured P-WO3@TiO2 nanofibrous membrane acts as a self-supported electrocatalyst, presenting an enhanced ammonia yield (6.54 × 10−10 mol s−1 cm−2) and faradaic efficiency (17.5%) compared to the undoped counterpart.