Issue 1, 2020

High-throughput HSE study on the doping effect in anatase TiO2

Abstract

Titania is a widely used semiconductor due to its excellent optoelectronics and catalytic properties. Doping with other cations or anions by substitution of Ti or O is a common way to adjust the electronic structure of pristine TiO2. Here, using ab initio calculations at the Heyd–Scuseria–Ernzerhof (HSE06) level, the substitution energy, formation energy and electronic structures of anatase TiO2 doped with 40 kinds of elements including transition metals, alkali metals, alkaline earth metals, p-block metals, and nonmetals have been studied systematically. It is found that doping with most of these elements can narrow down the band gap of TiO2, while in some doped systems, a recombination center induced by intermediate bands is also observed. Besides, for transition metal-doped TiO2 systems, the electron spin state analysis of dopants and the doping level investigation reveal that a relatively high spin structure tends to be formed in Cr, Mn, Fe, Zn, Mo, Tc, Ru and Cd-doped TiO2, and the doping levels of 4d-orbital transition metals are generally higher than those of 3d-orbital transition metals.

Graphical abstract: High-throughput HSE study on the doping effect in anatase TiO2

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2019
Accepted
22 Oct 2019
First published
23 Oct 2019

Phys. Chem. Chem. Phys., 2020,22, 39-53

High-throughput HSE study on the doping effect in anatase TiO2

J. Liu, M. Weng, S. Li, X. Chen, J. Cen, J. Jie, W. Xiao, J. Zheng and F. Pan, Phys. Chem. Chem. Phys., 2020, 22, 39 DOI: 10.1039/C9CP04591K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements