Scattering of NO(ν = 3) from Au(111): a stochastic dissipative quantum dynamical perspective†
Abstract
In this work, we present a theoretical study of the scattering dynamics of NO(ν = 3) from an ideal unreconstructed Au(111) surface. The simulations are performed in reduced dimensions at the three high-symmetry sites employing our recent modification to the stochastic wave packet approach for diatomic-metal scattering [J. Chem. Phys., 2019, 150, 184105]. Energy exchange between molecular vibrational degrees of freedom and the electron–hole pairs (EHP) of the metal is accounted for by quantized stochastic jump operators, with associated rates obtained from a microscopic model based on Fermi's golden rule. The simulations are found to reproduce the experimentally observed trend of enhanced vibrational relaxation probabilities with increasing initial translational energy. Molecular dynamics simulations with electronic friction (MDEF) in the independent atom approximation were performed to compare classical and quantum dynamical descriptions of that system. Significant differences between these two descriptions were found indicating that intermode coupling must be described accurately by using a good potential energy surface, and pointing out at the potentially important influence of a quantized description of energy relaxation in describing the scattering of NO from Au(111).