Electric field modulation in the auxetic effect of BP-analog monolayer As and Sb by first-principles calculations
Abstract
In this paper, we have introduced the auxetic effect in black phosphorus (BP) analog Sb and achieved auxetic modulations in monolayer As and Sb via first-principles calculations. Compared with monolayer As, the monolayer Sb is phonon unstable. By applying uniaxial strain along each direction, we discovered zigzag–vertical reversibility on out-of-plane auxeticity, and the negative Poisson's ratios for monolayer As and Sb were simulated to be −0.125/−0.172 and −0.036/−0.063, respectively, by applying the strain along zigzag/vertical directions. The negative Poisson's ratio could be significantly manipulated by applying a vertical electric field as it can be increased up to 70.3% for monolayer As and decreased up to 55.6% for monolayer Sb. Such an intrinsic negative Poisson's ratio and electric field modulation could endow these monolayers with potential applications in auxetic optoelectronic devices, electrodes and sensors, leading to novel multi-functionalities.