Spin-transfer-torque mediated quantum magnetotransport in MoS2/phosphorene vdW heterostructure based MTJs†
Abstract
Spin-transfer-torque mediated quantum magnetotransport behaviour can be realized via magnetization density switching in 2D van der Waals heterostructures for device applications. In this context, time-dependent spin-current controls the spin-transfer-torque behaviour within a density functional theory simulation supported by Green's function. Here, magnetotransport characteristics have been revealed in a model semiconducting MoS2/phosphorene van der Waals heterostructure at the nanoscale. We study the dynamics of spin-current channelized heterojunction transport with rotational variation in the magnetization angle. It is observed that the time-varying spin-transfer-torque remains invariant irrespective of the magnetization angle direction. Meanwhile, the polarized spin-current shows a persistent damped oscillatory behavior with the oscillation frequency proportional to the applied external magnetic field. This oscillating behavior shows a transient spin-transfer-torque with close proximity to the steady-state value. These findings support the existence of active interfacial resonant states for spintronic device applications.