Probing the impact of the N3-substituted alkyl chain on the electronic environment of the cation and the anion for 1,3-dialkylimidazolium ionic liquids†
Abstract
In this study, X-ray photoelectron spectroscopy is used to probe the impact of the N3-substituted alkyl group on the electronic environment of the cation and the anion by comparing two types of imidazolium cations, 1-alkyl-3-butylimidazolium and 1-alkyl-3-methylimidazolium. Due to the more intense inductive effect changing from methyl to butyl, the electronic environment of the cationic nitrogen can be significantly affected, which is reflected in a shift of N 1s binding energy. The magnitude of the binding energy shift is found to be more pronounced in the case of the less basic anion and inversely proportional to the basicity of the anion. The increase of the N3-substituted alkyl chain length can also influence the charge-transfer effect from the anion to the cation. This gives rise to a change in the electronic environment of the anion. Such an impact is found to be concentrated on the anion-based component bearing more negative point charges.