Issue 25, 2020

Self assembly of nanorods on microspheres at fluid–fluid interfaces

Abstract

The potential applications of metal nanoparticles require their assembly/deposition on different solid matrices. In this work, an experimental method is demonstrated to assemble gold nanorods (AuNRs) as a ring-like structure on polystyrene (PS) microspheres at the fluid–fluid interface via dip-coating followed by solvent evaporation. The effects of AuNR concentration, size and surface charge of PS particles and size of AuNRs on the formation of AuNR ring-like structures on templated PS particles are investigated. A mechanism based on the evaporative drying of a liquid capillary bridge hinged between two PS microspheres is proposed for the formation of the ring-like structure on the PS microspheres. As the liquid evaporates from the pinning line on the PS microsphere surface, the ring-like structure is formed by the convective deposition of AuNRs. The decane–water interfacial tension dictates the position of the pinning line and thus controls the position/diameter of the ring on the PS microspheres. The ring diameter is found to be strongly affected by the template particle diameter. The generality of the experimental scheme is demonstrated by making a ring-like deposit of hematite ellipsoids on PS particles and their position is varied by changing the oil–water interfacial tension via the addition of a surfactant. The work demonstrates a simple, scalable and interface-based method of depositing both spherical and non-spherical nanoparticles on microspheres, which allows the manipulation of nanoparticles as functional components in fabricating devices.

Graphical abstract: Self assembly of nanorods on microspheres at fluid–fluid interfaces

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2020
Accepted
03 Jun 2020
First published
05 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 14201-14209

Self assembly of nanorods on microspheres at fluid–fluid interfaces

N. Thomas, S. Shivkumar and E. Mani, Phys. Chem. Chem. Phys., 2020, 22, 14201 DOI: 10.1039/D0CP02396E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements