NMR parameters of FNNF as a test for coupled-cluster methods: CCSDT shielding and CC3 spin–spin coupling
Abstract
NMR shielding and spin–spin coupling constants of cis and trans isomers of FNNF have been determined to near-quantitative accuracy from ab initio calculations. The FNNF system, containing multiple N–F bonds and fluorine atoms, provides a severe test of computational methods. Coupled-cluster methods were used with large basis sets and complete basis set (CBS) extrapolations of the equilibrium geometry results, with vibrational and relativistic corrections. Shielding constants were calculated with basis sets as large as aug-cc-pCV7Z, together with coupled-cluster expansions up to CCSDT, at the all-electron CCSD(T)/aug-cc-pCVQZ optimized geometries. Spin–spin coupling constants have been determined with specialized versions of the correlation consistent basis sets ccJ-pVXZ, further augmented with diffuse functions. All-electron coupled-cluster methods up to CC3 were applied in these calculations. The results of this work highlight the application of state-of-the-art theoretical techniques, and provide the most accurate NMR properties of FNNF to date, which can serve to guide and supplement NMR experimentation.