Issue 37, 2020

Insights into lithium ion deposition on lithium metal surfaces

Abstract

Lithium metal is among the most promising anodes for the next generation of batteries due to its high theoretical energy density and high capacity. Challenges such as extreme reactivity and lithium dendrite formation have kept lithium metal anodes away from practical applications. However, the underlying mechanisms of Li ion deposition from the electrolyte solution onto the anode surface are still poorly understood due to their inherent complexity. In this work, density functional theory calculations and thermodynamic integration via constrained molecular dynamics simulations are conducted to study the electron and ion transfer between lithium metal slab and the electrolyte in absence of an external field. We explore the effect of the solvent chemistry and structure, distance of the solvated complex from the surface, anion–cation separation, and concentration of Li-salts on the deposition of lithium ions from the electrolyte phase onto the surface. Ethylene carbonate (EC), 1,2-dimethoxyethane (DME), 1,3-dioxolane (DOL), and mixtures of them are used as solvents. These species compete with the salt anion and the Li cation for electron transfer from the surface. It is found that the structure and properties of the solvation shell around the lithium cation has a great influence on the ability of the cation to diffuse as well as on its surrounding electron environment. DME molecules allow easier motion of the lithium ion compared with EC and DOL molecules. The slow growth approach allows the study of energy barriers for the ion diffusion and desolvation during the deposition pathway. This method helps elucidating the underlying mechanisms on lithium-ion deposition and provides a better understanding of the early stages of Li nucleation.

Graphical abstract: Insights into lithium ion deposition on lithium metal surfaces

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2020
Accepted
09 Sep 2020
First published
10 Sep 2020

Phys. Chem. Chem. Phys., 2020,22, 21369-21382

Author version available

Insights into lithium ion deposition on lithium metal surfaces

S. Angarita-Gomez and P. B. Balbuena, Phys. Chem. Chem. Phys., 2020, 22, 21369 DOI: 10.1039/D0CP03399E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements