Conformer-specific VUV-MATI spectroscopy of methyl vinyl ketone: stabilities and cationic structures of the s-trans and s-cis conformers
Abstract
Methyl vinyl ketone (MVK), a volatile compound with photochemical activity, has received considerable attention in the fields of environmental chemistry and atmospheric chemistry. We explored the conformational stabilities of MVK in the neutral S0 and the cationic D0 states using conformer-specific vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy, which provided identifiable vibrational spectra for cationic MVK conformers. Based on the origin bands of the two individual conformers of MVK identified in the MATI spectra under different supersonic expansion conditions, the accurate adiabatic ionization energies of the s-trans and the s-cis conformers were determined to be 77 867 ± 4 (9.6543 ± 0.0005 eV) and 78 222 ± 4 cm−1 (9.6983 ± 0.0005 eV), respectively. The identifiable vibrational spectra of the two cationic conformers were further confirmed using vibrational assignments based on the Franck–Condon fit. Accordingly, precise cationic structures of the MVK conformers could be determined. The structural changes of the two conformers upon ionization could be attributed to the removal of an electron from the highest occupied molecular orbital of each conformer, which consists of nonbonding molecular orbitals on the oxygen atom in the carbonyl group interacting with the σ orbitals in the molecular plane. Consequently, the s-trans conformer was preferred by 48 ± 18 and 403 ± 18 cm−1 in the neutral ground S0 and the cationic D0 states, respectively, which was supported by density-corrected density functional theory calculations and natural bond orbital analysis.