Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications
Abstract
The pursuit of efficient light sources has stimulated continued effort in the search of materials and methods for generating white light emission. In addition to the white light produced by light-emitting diodes (LEDs) and fluorescent lamps that involves spectral conversion of high energy to low energy emission, recent studies showed that it was also possible to produce white visible light by irradiating different active materials with near-infrared (NIR) constant-wave (CW) lasers. In this review, we begin by introducing and categorizing different materials that exhibit NIR laser driven white light emission, including normal inorganic phosphors, organometallic compounds, graphene, etc. We then discuss the photophysical behavior of this process in terms of optical spectra, temperature evolution and photoelectric response. Different mechanisms of while light generation are analyzed afterwards, and the possibility of a more general physical picture of this process is discussed. This review is concluded with a summary of the current understanding and discussion on potential applications and future perspectives.