Supramolecular chiroptical switches
Abstract
Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated. Future challenges in developing supramolecular chiroptical switches are also discussed.